Содержание
- Почему мигает лампа?
- Меняем параметры светодиодной лампы
- Значимость драйвера
- Продукция низкого качества
- Почему перегорают LED-лампы в квартире?
- Почему перегорают светодиодные лампы в автомобиле?
- Преимущества переделки
- Светильники с электромагнитным ПРА
- Переделка светильника с электронным ПРА
- Без демонтажа
- С демонтажем патронов и установкой перемычек
- Люминесцентные светильники на две, четыре и более ламп
- Подсветка выключателя
- Шунтирование резистором
- Устраняем мигание светодиодной лампы с помощью конденсатора
- Отдельный нулевой провод
- Проходной выключатель
- Подключение простой лампочки
- Демонтаж подсветки
- Моргает даже без выключателя с подсветкой
На коробочках светодиодных ламп производители рисуют невероятные цифры жизни ламп. Если прочитать их, можно подумать, что лампы живут дольше людей. Но это далеко не так. Иногда лампочки приходится менять чуть ли не каждый месяц. В чем же причина? Делимся советами, которые помогут увеличить срок жизни лампы.
Почему мигает лампа?
Как правило, лампы перестают работать из-за перегрева светодиодов или экстремальных нагрузок. Во избежание неприятных результатов необходимо снизить ток. После такого фокуса освещение чуть ослабеет, но обычные смертные вряд ли это заметят. Зато это позволит лампе стать «бессмертной».
Если открыть лампу, вы заметите круглый алюминиевый радиатор, который отводит тепло. Внутри можно увидеть алюминиевой вставку для охлаждения. Светодиоды подключены последовательно. Если из строя выходит один, то все остальные тоже отказываются работать. Важнейшим показателем для светодиода — является не напряжение, а ток. За это несет ответственность генератор с одним транзистором. По совместительству он также выполняет роль регулятора тока.
Как только светодиодная матрица нагревается, перегревается и плата. В результате параметры микросхемы меняются, что ведет к прискорбной кончине лампы.
Меняем параметры светодиодной лампы
Первым делом потребуется откусить бокорезами провода от матрицы к схеме так, чтобы остались хвостики в 1 см. Далее нужно впаять светодиодный мост к матрице. Он улучшит параметры напряжения. Диодный мост можно брать прямо с платы. Не перепутайте значения «+», «-». Плюс на серый проводник, минус — к белому проводу.
Снимите с платы конденсатор, впаивайте на выходе диодного моста. Это поможет сгладить пульсацию. К схеме подключаем конденсатор К73-17 на 1 mФ. Он подойдет для лампы мощностью 11 Вт. Здесь рекомендуется установить конденсатор побольше. На место сгоревшего светодиода делаем перемычку из олова паяльником.
Для сбора один конец конденсатора нужно подключить к цоколю лампы, а другой— к железному ободку с резьбой. От остатков электрической схемы можно избавиться.
Пришло время тестировать схему. Для этого подайте электричество 220 В. Мерьте ток, проверьте яркость. Результат такой։ ток – 35 mA, а мощность –7,7 Вт. Тест показывает, что мощность снизилась по сравнению с нормативом завода.
Далее необходимо сделать тест яркости и температуры. Для сравнения берите заводскую 7 Вт лампу. Очевидно, что «оперированная» лампочка светит ярче. Нужно также проверить нагрев. При помощи дистанционного прибора замерьте температуру. Заводская лампа нагревается до 85 градусов, а переделанная —54 градуса.
Остается только собрать лампу, изолируя контакты термоусадочной трубкой. С помощью клея и герметика зафиксируйте конденсатор. После установки цоколя с помощью клея закрепите матрицу по кругу. Последний штрих – фиксация рассеивающего колпачка.
Воспользуйтесь нашими советами и продлите срок жизни своих лампочек.
Например, красные светодиоды по напряжению питания могут иметь разброс от 1.8 вольта до 2,6, белые от 3,0 до 3,7 вольта. Даже в одной партии одного производителя могут встречаться светодиоды с разным рабочим напряжением.
Нюанс заключается в том, что светодиоды изготовленные на основе AlInGaP/GaAs (красные, желтые, зеленые – классические) довольно хорошо выдерживают перегрузку по току, а светодиоды на основе GaInN/GaN (синие, зеленые (сине-зеленые), белые) при перегрузке по току например в 2 раза живут … часа 2-3!!! Так, что если желаете чтобы светодиод горел и не сгорел в течении ходя бы 5 лет позаботьтесь о его питании.
Если мы устанавливаем светодиоды в цепочки (последовательное соединение) или подключаем параллельно добиться одинаковой светимости можно только если протекающий ток будет через них одинаков.
Еще хочу заострить внимание на том что светодиоды очень боятся обратного напряжения, оно очень низкое 5 – 6 вольт, импульсы обратного тока (а автомашинах) способны значительно сократить срок службы.
Значить как сделать самый простой стабилизатор тока?
Для этого берем если нужно стабилизировать ток в пределах до 1 ампера или LM317L если необходима стабилизация тока до 0,1 А.
Так выглядят стабилизаторы LM317 с рабочим током до 1,5 А.
А так LM317L с рабочим током до 100 мА.
Для тех кто не знает Vin – это сюда подается напряжение,Vout – отсюда получаем…., а Adjust вход регулировки. В двух словах LM317 это стабилизатор с регулируемым выходным напряжением.
Минимальное выходное напряжение 1,25 вольта (это если Adjust “посадить” прямо на землю) и до входного напряжения минус наши 1,25 вольта. Т.К. максимальное входное напряжение составляет 37 вольт, то можно делать стабилизаторы тока до 37 вольт соответственно.
Для того чтобы LM317 превратить в стабилизатор тока нужен всего 1 резистор! Схема включения выглядит следующим образом:
С формулы внизу рисунка очень просто рассчитать величину резистора для необходимого тока. Т.е сопротивление резистора равно – 1,25 разделить на требуемый ток. Для стабилизаторов до 0,1 ампера мощность резистора 0,25 W вполне годиться.
На токи от 350 мА до 1 А рекомендуется 2 вата. Для тех кто не хочет считать привожу таблицу резисторов на токи для широко распространенных светодиодов.
Ток (уточненный ток для резистора стандартного ряда) | Сопротивление резистора | Примечание |
20 мА | 62 Ом | стандартный светодиод |
30 мА (29) | 43 Ом | “суперфлюкс” и ему подобные |
40 мА (38) | 33 Ом | |
80 мА (78) | 16 Ом | четырехкристальные |
350 мА (321) | 3,9 Ом | одноватные |
750 мА (694) | 1,8 Ом | трехватные |
1000 мА (962) | 1,3 Ом | 5 W |
А теперь пример с учетом всего выше сказанного. Сделаем стабилизатор тока для белых светодиодов с рабочим током 20 мА, условия эксплуатации автомобиль (сейчас так моден световой тюннинг….).
Полученное значение 11,45 вольта ниже самого низкого напряжения в автомобиле – это хорошо! Это значит на выходе будет всегда наши 20 мА независимо от напряжения в бортовой сети автомобиля. Для защиты от выбросов положительной полярности поставим после диода супрессор на 24 вольта.
P.S. Подбирайте количество светодиодов так чтобы на стабилизаторе оставалось как можно меньше напряжения (но не меньше 1,3 вольта), это надо для уменьшения рассеиваемой мощности на самом стабилизаторе. Это особенно важно для больших токов. И не забудьте, что на токи от 350 мА и выше LMка потребует радиатор.
РИСУНОК 1
Z1 супрессор или стабилитрон для дешевых светодиодов можно и не ставить, но диод для в автомобиле обязателен Рекомендую его ставить даже если вы просто подключаете светодиоды с гасящим резистором. Как рассчитывать сопротивление резистора для светодиодов я думаю описывать излишне.
Количество светодиодов в цепочки надо выбирать с учетом вашего рабочего напряжения минут падения напряжения на стабилитроне минус на диоде.
Например: Вам необходимо в автомобиле подключить белые светодиоды с рабочим током в 20 мАм. Обратите внимание 20 мАм это рабочий ток для ФИРМЕННЫХ дорогих светодиодов!!! Только фирменные гарантирует такой ток, поэтому если вы не знаете точного происхождения выбирайте ток в районе 14-15 мАм.
Это для того, что бы потом не удивляться почему так быстро упала яркость или вообще почему они так быстро перегорели. Это тоже актуально и для мощных светодиодов. Потому, то что к нам завозят не всегда то, что маркировано на изделии.
Вопрос 1– сколько можно включить их последовательно? Для белых светодиодов рабочее напряжение 3,0-3,2 вольта. Примем 3,1. Напряжение минимальное рабочее на стабилизаторе (исходя из его опорного 1,25) приблизительно 3 вольта. Падение на диоде 0,6. Отсюда суммируем все напряжения и получаем минимальное рабочее напряжение выше которого наступает режим стабилизации тока на заданном уровне (если ниже, соответственно ток будет ниже) = 3,1*3 +3,0+0,6 = 12,9 вольта. Для автомобиля минимальное напряжение в сети 12,6 – это нормально.
Для белых светодиодов на 20 мАм можно включать 3 шт, для сети 12,6 вольта. Учитывая, что при включенном двигателе нормально рабочее напряжение сети 13,6 вольта (это номинальное, в других вариантах может быть и выше!!!), а рабочее LM317до 37 вольт у нас все в норме.
Вопрос 2- как рассчитать сопротивление резистора задающего ток! Хоты выше и было описано, вопрос задают постоянно.
Принимаем ближайшее значение 62 Ома.
Еще пару слов о групповом включении светодиодов. Идеальное это последовательное включение со стабилизацией тока.
Светодиоды – это в принципе стабилитроны с очень малым обратным рабочим напряжениям. Если есть возможность наводок высокого напряжения от близ лежащих высоковольтных проводов необходимо каждый светодиод зашунтировать защитным диодом. (для справки многие производители особенно для мощных диодов это уже делают в монтируя в изделие защитный диод).
если необходимо подключить массив из светодиодов, то рекомендую такую схему включения
Резисторы необходимы для выравнивания токов по цепям и являются балластными нагрузками при повреждениях светодиодов в массиве.
Как рассчитать значение гасящего резистора для светодиода. Расчет проводиться по закону Ома.
Тип светодиода | Рабочее напряжение (падение на светодиоде) |
Инфракрасный | 1,6-1,8 |
Красный | 1,8-2,0 |
Желтый (зеленый) | 2,0-2,2 |
Зеленый | 3,0-3,2 |
Синий | 3,0-3,2 |
Ультрафиолетовый | 3,1-3,2 |
Белый | 3,0-3,1 |
Зная падения на на светодиоде можно вычислить остаток на напряжения на резисторе.
Например. Питающее напряжение V pit = 9 вольт. Мы подключаем 1 белый светодиод падение на нем 3,1 вольт. Напряжение на резисторе будет = 9 – 3,1 = 5,9 Вольта.
Удачи…
Неприятно наблюдать, как сгорела лампа накаливания. Однако эта, знакомая всем проблема, решается обычной заменой на новую лампочку с минимальным ударом по семейному бюджету. Гораздо хуже, если неожиданно перегорает светодиодная лампа, цена которой на порядок выше. Схожие проблемы возникают и среди автолюбителей, желающих ощутить мощность светодиодного потока на трассе. Почему заявленное время работы с четырьмя нулями для некоторых светодиодных (led, от англ. light-emitting diode) ламп остаётся только на этикетке? Что нужно знать, чтобы ориентироваться среди множества светодиодных новинок? В поисках ответов рассмотрим причины выхода лампочек из строя и предоставим несколько решений.
Оглавление:
Значимость драйвера
Через любой светодиод, независимо от области применения, должен протекать стабилизированный номинальный ток (паспортное значение). Только в этом случае свечение будет ровным, а время работы кристалла сможет перешагнуть рубеж в 10 тыс. часов. Независимо от формы, размера и количества светодиодов, все LED-лампы можно разделить на две основные категории по способу управления:
- на основе драйвера с импульсным формирователем тока нагрузки;
- на основе балластного источника напряжения.
Драйвер с импульсным трансформатором и токовым преобразователем – единственно правильное техническое решение для питания LED-ламп, который выпускается промышленно.
Чтобы оценить важность стабилизатора тока, рассмотрим его принцип действия на коротком примере. В потолочных люстрах со светодиодной подсветкой, как правило, устанавливают блок стабилизатора тока. Его выходное напряжение варьируется в широком диапазоне, а значение выходного тока останется константой даже с одним светодиодом в нагрузке. В такой люстре перегоревший светодиод можно просто закоротить. Примерно по такому же принципу функционируют и более мощные токовые драйверы.
Учитывая, что выпуск светодиодных лампочек с импульсным токовым драйвером экономически не совсем оправдан, китайские предприниматели решили упростить его конструкцию. Вместо драйвера в корпус светодиодной лампы ставят балластный блок питания без функции стабилизации тока. Его выходное напряжение рассчитывают исходя из количества SMD светодиодов внутри корпуса. В результате перепадов напряжения сети изменяется мощность свечения лампы. А частые фазовые скачки до 240 В приводят к тому, что светодиодные лампы перегорают.
Продукция низкого качества
Большая часть светодиодных ламп китайских брендов перегорает по причине низкокачественной сборки. Под стильным внешним видом изделия может скрываться несколько неприятных сюрпризов:
- дешёвый электролитический конденсатор, который постепенно теряет ёмкость, работая в высокотемпературной среде;
- отсутствие качественного теплоотвода;
- отсутствие хорошего драйвера;
- «холодная пайка» контактных площадок и пр.
Если заглянуть внутрь корпуса перегоревшей светодиодной лампы, можно обнаружить, что термопаста нанесена на алюминиевую подложку лишь частично. В результате отвод тепла от платы к радиатору происходит неравномерно, что ведёт к перегреву излучающего SMD элемента, находящегося в худшем температурном режиме. Смышленые китайские инженеры выполняют расчет балластного блока питания так, чтобы выходное напряжение на нём было немного выше номинального. Первоначальная яркость такого изделия впечатляет покупателя, а значит, коммерческая цель достигнута. В лучшем случае, спустя несколько месяцев эксплуатации, световой поток снизится на 30%, в худшем – лампа перегорит.
Перечисленные факты свидетельствуют об умышленном ухудшении технических характеристик изделия производителем. Ведь, если все желающие перейдут на качественное светодиодное освещение, то кто будет покупать лампы?
Почему перегорают LED-лампы в квартире?
Если качество лампочки не вызывает сомнений, то её перегорание может быть вызвано проблемой в электропроводке. Ослабленный контакт в патроне или в распределительной коробке станет причиной бросков питающего напряжения и спровоцирует поломку. В дешёвых LED-лампочках недостаточный отвод тепла от светоизлучающих кристаллов вынуждает работать светодиоды на грани перегрева. Монтаж таких ламп на кухне, где температура воздуха под потолком во время работы газовой или электропечи превышает 30 °C, также способствует ускоренной деградации кристалла со всеми вытекающими последствиями.
Организации декоративной подсветки из светодиодных лент также необходимо уделить должное внимание. Если ленту типа SMD 5050 не наклеить на специальный профиль из алюминия, то вскоре можно будет наблюдать угасание отдельных сегментов.
Почему перегорают светодиодные лампы в автомобиле?
Заменяя привычные галогенные лампочки на светодиодные, владелец автомобиля надеется выжать из них максимум пользы. Однако нехватка знаний о разрекламированных источниках света приводит к их сгоранию.
Зачастую нехватка опыта заключается в покупке автомобильных светодиодных ламп без соответствующих драйверов. Роль токового ограничителя выполняет мощный резистор. Получается всё просто, но не надёжно. С такой схемотехникой повышение напряжения бортовой сети с 12 В до 14 В, что губительно для LED-лампочек. Пропорциональный рост тока приводит к мерцанию, частичному погасанию, а затем перегоранию лампы. Обвиняя во всём некачественный товар, можно продолжать ставить лампы сомнительных фирм и «наступать на те же грабли».
Вторая распространённая причина – мелкооптовый заказ светодиодных ламп типа «no name» через интернет. Сэкономив сотню рублей, покупатель рискует получить несколько бракованных экземпляров или изделия с нестандартным цоколем, ручная доработка которых ухудшит технические данные.
А ещё конструктивные особенности некоторых фар не позволяют дополнительно размещать в них светодиоды габаритов и поворотов. Такая модернизация ведёт к их перегреву за счет тепла от родных ламп головного света.
В качестве успокоительного средства обладателям перегоревших светодиодных ламп можно посоветовать их отремонтировать. В сравнении с лампочками накаливания и галогенками – это большой плюс. Главное – во время ремонта правильно определить перегоревший элемент и устранить причину выхода изделия из строя.
“; cachedBlocksArray[119106] = ” (adsbygoogle = window.adsbygoogle || []).push({});”; cachedBlocksArray[128533] = “”; cachedBlocksArray[117891] = ” (adsbygoogle = window.adsbygoogle || []).push({});”; cachedBlocksArray[107246] = ” (adsbygoogle = window.adsbygoogle || []).push({});”; cachedBlocksArray[107077] = “”; cachedBlocksArray[119230] = “”; cachedBlocksArray[119228] = ” (yaads = window.yaads || []).push({ id: ‘500528-12’, render: ‘#id-500528-12’ });”; cachedBlocksArray[107080] = “”; cachedBlocksArray[106851] = “”; cachedBlocksArray[106849] = “”;
Если старый советский светильник с люминесцентными лампами дневного света типа ЛБ-40, ЛБ-80 вышел из строя, или вам надоело менять в нем стартера, утилизировать сами лампы (а просто так выкидывать их в мусорку уже давно нельзя), то его с легкостью можно переделать в светодиодный.
Самое главное, что у люминесцентных и светодиодных ламп одинаковые цоколи – G13. Никакая модернизация корпуса в отличие от других видов штырьковых контактов не потребуется.
Преимущества переделки
При этом вы получите:
- экономию электроэнергии (в 2 раза)
Например, новые модели таких ЛПО и ЛВО часто используются для потолков Armstrong. Вот примерное сравнение их эффективности:
Еще одно преимущество светодиодных – есть модели рассчитанные на напряжение питания от 85В до 265В. Для люминесцентного нужно 220В или близко к этому.
Для таких Led, даже если напряжение в сети у вас слабое или завышенное, они будут запускаться и светить без нареканий.
Светильники с электромагнитным ПРА
На что нужно обратить внимание при переделке простых люминесцентных светильников в светодиодные? Прежде всего на его конструкцию.
Если у вас простой светильник старого советского образца со стартерами и обыкновенным (не электронным ПРА) дросселем, то фактически и модернизировать ничего не надо.
Просто вытаскиваете стартер, подбираете под габаритный размер новую светодиодную лампу, вставляете ее в корпус и наслаждаетесь более ярким и экономным освещением.
Если стартер из схемы не убрать, то при замене лампы ЛБ на светодиодную, можно создать короткое замыкание.
Дроссель же демонтировать не обязательно. У светодиодной, потребляемый ток будет в пределах 0.12А-0.16А, а у балласта рабочий ток в таких старых светильниках 0.37А-0.43А, в зависимости от мощности. Фактически он будет выполнять роль обыкновенной перемычки.
После всей переделки светильник у вас остается тот же самый. На потолке не нужно менять крепление, а сгоревшие лампы не придется более утилизировать и искать специальные контейнеры для них.
Для таких ламп не нужны отдельные драйвера и блоки питания, так как они уже идут встроенными внутри корпуса.
Главное, запомнить основную особенность – у светодиодных, два штырьковых контакта на цоколе, жестко соединены между собой.
А у люминесцентной они соединены нитью накала. Когда она раскаляется, происходит зажигание паров ртути.
В моделях с электронным ПРА нить накала не используется и промежуток между контактами пробивается импульсом высокого напряжения. Самые распространенные размеры таких трубок:
- 600мм (на потолок для светильников типа Armstrong)
Чем больше их длина, тем ярче свечение.
Переделка светильника с электронным ПРА
Если же у вас модель более современная, без стартера, с электронным дросселем ЭПРА (электронный пускорегулирующий аппарат), то здесь придется немного повозиться с изменением схемы.
Что находится внутри светильника до переделки:
Дроссель это то, что нужно будет выкинуть в первую очередь. Без него вся конструкция существенно потеряет в весе. Откручиваете крепежные винты или высверливаете заклепки в зависимости от крепежа.
Затем отсоединяете питающие провода. Для этого может понадобиться отвертка с узким жалом.
Можно данные проводки и просто перекусить пассатижами.
Схема подключения двух ламп отличается, на светодиодной все выполнено гораздо проще:
Главная задача которую нужно решить – это подать 220В на разные концы лампы. То есть, фазу на один вывод (например правый), а ноль на другой (левый).
Ранее говорилось, что у светодиодной лампы оба штырьковых контакта внутри цоколя, соединены между собой перемычкой. Поэтому здесь нельзя как в люминесцентной, подать между ними 220В.
Чтобы убедиться в этом, воспользуйтесь мультиметром. Установите его в режим измерения сопротивления, и касаясь измерительными щупами двух выводов произведите замер.
На табло должны высветиться такие же значения, как и при замыкании щупов между собой, т.е. нулевые или близкие к нему (с учетом сопротивления самих щупов).
У лампы дневного света, между двумя выводами с каждой стороны, есть сопротивление нити накала, которая после подачи напряжения 220V через нее, разогревается и ”запускает” лампу.
Далее всю работу можно проделать двумя способами:
Без демонтажа
Самый простой способ это без демонтажа, но придется докупить пару зажимов Wago. Выкусываете вообще все провода подходящие к патрону на расстоянии 10-15мм или более. Далее заводите их в один и тот же зажим Ваго.
Тоже самое проделываете с другой стороной светильника. Если у клеммника wago недостаточно контактов, придется использовать 2 шт.
После этого, все что остается – подать в зажим на одну сторону фазу, а на другую ноль.
Нет Ваго, просто скручиваете провода под колпачок СИЗ. При таком методе, вам не нужно разбираться с существующей схемой, с перемычками, лезть в контакты патронов и т.п.
С демонтажем патронов и установкой перемычек
Другой метод более скрупулезный, зато не требует никаких лишних затрат.
Снимаете боковые крышки со светильника. Делать это нужно осторожно, т.к. в современных изделиях защелки сделаны из хрупкой и ломкой пластмассы.
После чего, можно демонтировать контактные патроны. Внутри них расположены два контакта, которые изолированы друг от друга.
Такие патроны могут быть нескольких разновидностей:
Все они одинаково подходят для ламп с цоколем G13. Внутри них могут быть пружинки.
В первую очередь они нужны не для лучшего контакта, а для того, чтобы лампа не выпадала из него. Плюс за счет пружин, идет некоторая компенсация размера длины. Так как с точность до миллиметра, изготовить одинаковыми лампы не всегда получается.
К каждому патрону подходят два провода питания. Чаще всего, они крепятся путем защелкивания в специальных без винтовых контактах.
Проворачиваете их по часовой и против часовой стрелки, и приложив усилие вытаскиваете наружу один из них.
Как уже говорилось выше, контакты внутри разъема изолированы друг от друга. И демонтируя один из проводков, вы фактически оставляете не удел одно контактное гнездо.
Весь ток теперь будет течь через другой контакт. Конечно, все будет работать и на одном, но если вы делаете светильник для себя, имеет смысл немного усовершенствовать конструкцию, поставив перемычку.
Благодаря ей, вам не придется ловить контакт, проворачивая светодиодную лампу по сторонам. Двойной разъем обеспечит надежное соединение.
Перемычку можно сделать из лишних проводов питания самой лампы, которые у вас обязательно останутся в результате переделки.
Тестером проверяете, что после монтажа перемычки, между ранее изолированными разъемами есть цепь. То же самое проделываете со вторым втычным контактом на другой стороне светильника.
Главное проследить, чтобы оставшийся провод питания был уже не фазным, а нулевым. Остальное выкусываете.
Люминесцентные светильники на две, четыре и более ламп
Если светильник у вас двухламповый, лучше всего к каждому разъему подавать напряжение отдельными проводниками.
При монтаже простой перемычки между двух и более патронов, конструкция будет иметь существенный недостаток.
Вторая лампа будет светиться, только при условии, что первая установлена на свое место. Уберете ее, и тут же погаснет и другая.
Питающие проводники должны сходиться на клеммную колодку, где поочередно у вас будет подключены:
До установки светильника на потолок, необходимо подать на него напряжение и проверить работу ламп. Если какой-то контакт будет отходить, можно здесь же все и подрегулировать, не залезая на верх, прыгая по стремянкам.
Светодиодные лампы, в отличие от люминесцентных с обзором свечения 360 градусов, имеют направленный поток света.
Но за счет возможности поворачиваться вокруг оси на 35 градусов в цоколе G13 + вращая сам цоколь, вы сможете их подрегулировать в нужную вам сторону.
Однако такая конструкция цоколя есть не у всех ламп. И иногда приходится пересверливать крепление патронов на 90 градусов.
Если все в порядке, монтируете светильник на свое место и наслаждаетесь экономным и боле ярким освещением.
31 марта 2019
Чаще всего с вопросом почему мигает светодиодная лампа вы можете столкнуться после ремонта или замены обычных ламп накаливания на энергосберегающие. Решить эту проблему можно 6 разными способами. Но чтобы узнать в чем причина такого странного поведения ламп для начала покопаемся в теории.
Вот одна из типовых схем энергосберегающей лампы.
Напряжение 220В поступает на диодный мост. В итоге получается постоянное напряжение определенной пульсации. Чтобы выровнять эти пульсации используется конденсатор С4. Вот как раз этот конденсатор и является всему виновником.
Подсветка выключателя
Самой главной причиной моргания выключенных светодиодных и энергосберегающих лампочек является наличие подсветки в выключателе. При выключенном выключателе маленький ток все равно продолжает течь по цепи подсветки заряжая фильтрующий конденсатор. Зарядившись, конденсатор пытается запустить схему питания лампы, однако «силы» не хватает и он тут же разряжается, а лампочка кратковременно вспыхивает. Затем все это повторяется снова и снова.
Распространены 6 основных методов избавления мигания выключенных энергосберегающих ламп:
- шунтирование резистором
- шунтирование конденсатором
- подключение подсветки отдельным проводом
- использование проходного выключателя
- демонтаж подсветки внутри выключателя
- включение параллельно светодиодной обычной лампочки
Шунтирование резистором
Бороться с миганием можно зашунтировав схему определенным сопротивлением. Для этого берете резистор сопротивлением 1мОм и мощностью от 0,5 до 2Вт. Для безопасности лучше заизолировать его термоусадкой.
Лучшее место подключения для резистора — это распределительная коробка. Подключаете его между нулевым и фазным проводами лампочки (параллельно энергосберегайке). Особенно удобно подключать этот резистор через зажимы Wago.
После этого ваша лампа перестанет моргать.
Если ваша распредкоробка запрятана и к ней нет доступа (хотя это уже является нарушением), или в ней нет свободного места, то резистор можно припаять прямо к фазному и нулевому проводу люстры. После чего запрятать концы в клеммник.
Метод имеет большой минус.
Сопротивление будет греться, а при неправильном подборе мощности и вовсе может привести к пожару.
Кроме того, современные электронные счетчики в квартире будут учитывать расход энергии на нагрев сопротивления, и вы в конечном итоге будет платить не только за освещение, но и за эту «модернизацию».
Устраняем мигание светодиодной лампы с помощью конденсатора
Если у вас нет резистора, то вместо него можно воспользоваться конденсатором емкостью от 0,01 до 1мкФ и напряжением с двухкратным запасом от импульсных помех 2*220=440В. Но надежнее всего брать минимум 630В.
Когда нет конденсатора на 630В, а есть на 400В, то при помощи паяльника можно собрать вот такую схемку.
Здесь один резистор служит для защиты конденсатора от импульсных помех, а второй для разряда конденсатора.
В цепи переменного тока, конденсатор это по сути реактивное сопротивление, которое не учитывается эл.счетчиком и в отличии от резистора конденсатор не греется.
Поэтому установка конденсатор более предпочтительнее и безопаснее. Устанавливайте его в те же места, что и вышеописанные с использованием сопротивления (распредкоробка, клеммник люстры).
Где найти такой конденсатор? Чтобы не бегать по радиомагазинам можно просто разобрать уже сгоревшую энергосберегающую лампу и вытащить оттуда или взять из обычного стартера для люминисцентных ламп. Правда есть одно НО. Применять лучше бумажный или керамический, т.к. электролитический при скачках напряжения может не безопасно взорваться. Так что если вы взяли именно его в качестве шунта, обязательно берите с большим запасом по напряжению.
Отдельный нулевой провод
Если у вас выключатель находится в одном блоке с розеткой или к выключателю подведен еще и нулевой провод, то подсветку можно жестко подключить к фазе и нулю. Она будет гореть постоянно, но лампочка моргать уже не будет. Метод связан с прокладкой дополнительных проводов и не очень удобен.
Проходной выключатель
Также можно воспользоваться проходным выключателем вместо обычного. В этом случае в одном положении будет гореть лампочка, а во втором подсветка. Лампочка также моргать не будет.
Это достигается за счет прямой подачи в отключенном положении на лампу только нулевых проводников.
И уже никакие наводки не заставят ее засветиться. Правда здесь также нужно заводить нулевой проводник на выключатель. Зато данный способ позволяет избавиться от мигания, даже когда подсветка не является этому причиной! (об этом сказано ниже).
Если вас не сильно напрягают дополнительные затраты связанные с покупкой проходного переключателя, и залезать в дебри с выбором подходящих резисторов и конденсаторов у вас нет желания, то этот метод наиболее оптимальный.
Подключение простой лампочки
А когда в люстре имеется несколько рожков, то можно вместо одной энергосберегающей лампочки параллельно поставить лампу накаливания. Мигания также должны прекратиться. Метод работает только при наличии нескольких патронов в одной лампе и наверное самый мало затратный.
Демонтаж подсветки
Ну а наконец самый радикальный метод, когда уже сдают нервы — просто выдерните ненавистную подсветку из выключателя. Правда возникает вопрос для чего вы тогда покупали такой выключатель?
Моргает даже без выключателя с подсветкой
А что делать если ваш выключатель без подсветки, а лампа все равно моргает? При отключенном выключателе длинный питающий провод лампы может выступать своеобразной антенной. И если рядом с ним в одной штробе проложены много параллельных проводов под напряжением, то в отключенном проводе лампочки, они начнут наводить свое электрическое поле.
В результате чего образуется потенциал, который может заряжать фильтрующий конденсатор в схеме питания люминесцентной лампы.
Что с этим делать? Все также шунтировать лампу относительно маленьким сопротивлением, конденсатором или применять методы описанные выше.
ли со статьей или есть что добавить?